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Abstract

In this and a subsequent paper, using the notion of fuzzy neighborhood filter which has been

defined in [5], we introduce and study the separation axioms Ti, i = 0, 1, 2, 3, 4 in the case of a fuzzy

topology. These axioms are related only to usual points and ordinary subsets. In the classical case

L = {0, 1} these axioms are the usual ones. These axioms fulfills many properties analogous to

the usual axioms. Whereas this paper is devoted to the axioms T0, T1, T2, in part II the axioms

T3, T4 are introduced and studied.

Keywords: Fuzzy filters, Principal fuzzy filters, Fuzzy neighborhood filters, Valued fuzzy neighbor-
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Introduction

There are many definitions for the fuzzy separation axioms depend on fuzzy points

[9, 10]. In this paper we introduce fuzzy separation axioms using only the usual

points and the ordinary subsets. A notion related to usual points, called fuzzy

neighborhood filter at a point, is used to define these axioms.

The notion of fuzzy filter has been introduced by Eklund and Gähler in [2].

By means of an extension of this notion of fuzzy filter, a point-based approach to
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fuzzy topology related to usual points has been developed by Gähler in [4,5]. In

this approach several notions are related to usual points, between these notions the

notion of fuzzy neighbourhood filter which is defined by means of the notion of

interior of a fuzzy set. For each fuzzy topological space, the mapping which assigns

to each point x the fuzzy neighborhood filter at x can be considered itself as the

fuzzy topology.

These fuzzy separation axioms depends only on usual points and so the work

with these axioms will be more simple and more general. We study here the cases

i = 0, 1, 2. These fuzzy separation axioms are good extensions in sense of Lowen

[12], this means an induced fuzzy topological space (X,ω(T )) is Ti if and only if the

underlying topological space (X, T ) is Ti. The implications between these axioms

goes well, that is, each Ti-space is Ti−1 for i = 1, 2. Moreover, for each fuzzy

topological space (X, τ) which is Ti, the α-level topological space (X, τα), α ∈ L1

and the initial topological space (X, ι(τ)) are Ti. We also show that the initial and

final fuzzy topological spaces of a family of Ti-spaces, i = 0, 1, 2, are also Ti-spaces.

Therefore the fuzzy topological product space, subspace, sum space and quotient

space of Ti-spaces, i = 0, 1, 2, are also Ti.

Gähler defined in [6] and [7] separation axioms for the convergence space using

the convergence M→ x of an element M of φX to an element x of X.

These axioms in the special case of a fuzzy topology are equivalent to our axioms.

This specialization we obtain in replacing the convergence M→ x by M ≤ N (x)

where N (x) is the fuzzy neighborhood filter at x.

1. On Fuzzy Neighborhood Filters

Throughout the paper let L be a complete chain with different least and last elements

0 and 1, respectively. Let L0 = L \ {0} and L1 = L \ {1}.

By a fuzzy subset of a set X we mean a mapping f : X → L of X into L. Denote

by LX and P (X) for the sets of all fuzzy subsets and of all ordinary subsets of X,
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respectively. For each x ∈ X and α ∈ L0, the fuzzy subset xα of X whose value α

at x and 0 otherwise is called the fuzzy point in X. For each α ∈ L, the constant

fuzzy subset of X with value α will be denoted by α.

A fuzzy topology on a set X ([1,8]) is a subset τ of LX which contains the constant

fuzzy sets 0 and 1 and is closed with respect to finite infima and arbitrary suprema.

The pair (X, τ) is called a fuzzy topological space and the elements of τ are called

open fuzzy sets. The interior intτf of a fuzzy set f is the greatest open fuzzy set

less than or equal to f , that is,

intτf =
∨

g∈τ, g≤f

g. (1.1)

For each fuzzy set f ∈ LX , the strong α-cut and the weak α-cut of f are the

subsets sαf = {x ∈ X | f(x) > α} and wαf = {x ∈ X | f(x) ≥ α} of X,

respectively.

If τ1 and τ2 are fuzzy topologies on X, then τ1 is said to be finer than τ2, denoted

by, τ1 ≤ τ2, provided τ1 ⊇ τ2. For each fuzzy topology τ on X, the α-level and the

initial topologies of τ are defined by: τα = {sαf | f ∈ τ} and ι(τ) = inf{τα | α ∈ L1}
respectively, where inf is the infimum with respect to the finer relation on fuzzy

topologies. If T is an ordinary topology on X, then the induced fuzzy topology on

X is given by.

ω(T ) = {f ∈ LX | sαf ∈ T for all α ∈ L1}.

Initial and final fuzzy topological spaces. Consider a family of fuzzy topo-

logical spaces ((Xi, τi))i∈I and for each i ∈ I a mapping fi : X → Xi. By the initial

fuzzy topology of (τi)i∈I with respect to (fi)i∈I is meant the coarsest fuzzy topology τ

on X for which all mappings fi : (X, τ) → (Xi, τi) are fuzzy continuous. τ is defined

as in ([11]) by the supremum of the family (f−1
i (τi))i∈I with respect to the finer rela-

tion on fuzzy topologies, that is, τ =
∨
i∈I

f−1
i (τi), where f−1

i (τi) = {f−1
i (g) | g ∈ τi}.

It is easily seen that f−1
i (τi) is the initial fuzzy topology of τi with respect to fi.

Let X be the cartesian product
∏
i∈I

Xi of the family (Xi)i∈I and pi : X → Xi be

3



the related projections. (X, τ =
∨
i∈I

p−1
i (τi)) is called the fuzzy topological product

space of the family ((Xi, τi))i∈I . It is clear that τ =
∨
i∈I

p−1
i (τi) is the initial fuzzy

topology of (τi)i∈I with respect to (pi)i∈I .

eIf (X, τ) is a fuzzy topological space, A is a non-empty subset of X, and i :

A ↪→ X is the inclusion mapping, then (A, τA = i−1(τ)) is called the fuzzy topological

subspace of (X, τ). τA is the initial fuzzy topology of τ with respect to i.

Assume now that fi : Xi → X is a mapping of Xi into X. By the final fuzzy

topology of (τi)i∈I with respect to (fi)i∈I we mean the finest fuzzy topology τ on

X for which all mappings fi : (Xi, τi) → (X, τ) are fuzzy continuous. τ is defined

in [11] as the infimum of the family (fi(τi))i∈I with respect to the finer relation on

fuzzy topologies, that is, τ =
∧
i∈I

fi(τi), where fi(τi) = {λ ∈ LX | fi
−1(λ) ∈ τi} is the

final fuzzy topology of τi with respect to fi.

Let X =
⊎
i∈I

Xi =
⋃
i∈I

(Xi × {i}) be the disjoint union of the family (Xi)i∈I and

ei : Xi → X, and for each i ∈ I the related canonical injections are defined by

ei(xi) = (xi, i). Then (X,
∧
i∈I

ei(τi)) is called the fuzzy topological sum space of the

family ((Xi, τi))i∈I . τ =
∧
i∈I

ei(τi) is the final fuzzy topology of (τi)i∈I with respect

to (ei)i∈I .

If (X, τ) is a fuzzy topological space and f : X → Y a surjective mapping, then

(Y, f(τ)) is called the fuzzy topological quotient space.

Fuzzy open and fuzzy closed mappings. Let (X, τ) and (Y, σ) be fuzzy

topological spaces. The mapping f : (X, τ) → (Y, σ) is called fuzzy open (fuzzy

closed) if the image f(g) of the open (closed) fuzzy sets g with respect to τ is open

(closed) with respect to σ.

Fuzzy filters. Let X be a non-empty set. By a fuzzy filter on X ([2,4]) is meant

a mapping M : LX → L such that the following conditions are fulfilled.

(F1) M(α) ≤ α holds for all α ∈ L and M(1) = 1.
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(F2) M(f ∧ g) = M(f) ∧M(g) for all f, g ∈ LX .

A fuzzy filter M is called homogeneous if M(α) = α for all α ∈ L.

If M and N are fuzzy filters on X, M is said to be finer than N , denoted by,

M≤ N , provided M(f) ≥ N (f) holds for all f ∈ LX . By M 6≤ N we denote that

M is not finer than N . If L is a complete chain, then

M 6≤ N ⇐⇒ there is f ∈ LX such that M(f) < N (f).

For each fuzzy filter M on X, the subset α-prM of LX defined by:

α-prM = {f ∈ LX | M(f) ≥ α}

is a prefilter on X, where a non-empty subset F of LX is called a prefilter on X

([13]) if the following conditions are fulfilled.

(P1) 0 6∈ F .

(P2) f, g ∈ F implies f ∧ g ∈ F .

(P3) f ∈ F and f ≤ g imply g ∈ F .

Proposition 1.1 [4] Let A be a set of fuzzy filters on X. Then the following are

equivalent.

(1) The infimum
∧

M∈A
M of A with respect to the finer relation of fuzzy filters

exists.

(2) For each non-empty finite subset {M1, . . . ,Mn} of A we have M1(f1)∧ · · · ∧
Mn(fn) ≤ sup(f1 ∧ · · · ∧ fn) for all f1, . . . , fn ∈ LX .

(3) For each α ∈ L0 and each non-empty finite subset f1, . . . , fn of
⋃

M∈A
α-prM

we have α ≤ sup(f1 ∧ · · · ∧ fn).

Ultra fuzzy filters. A fuzzy filter M on X is called an ultra fuzzy filter if it

does not have a properly finer fuzzy filter.
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Proposition 1.2 [2,4] For each fuzzy filter on a set X, there exists a finer ultra

fuzzy filter.

Fuzzy neighborhood filters. For each fuzzy topological space (X, τ) and each

x ∈ X the mapping N (x) : LX → L defined by

N (x)(f) = intτf(x) (1.2)

for all f ∈ LX is a fuzzy filter on X, called the fuzzy neighborhood filter of the space

(X, τ) at x ([5]).

For each x ∈ X, the mapping ẋ : LX → L defined by ẋ(f) = f(x) for all f ∈ LX

is a homogeneous fuzzy filter on X.

The fuzzy neighborhood filters fulfill the following conditions.

(N1) ẋ ≤ N (x) holds for all x ∈ X.

(N2) N (x)(y 7→ N (y)(f)) = N (x)(f) for all x ∈ X and f ∈ LX .

Note that the mapping y 7→ N (y)(f) is the fuzzy set intτf .

Proposition 1.3 [5] There is a one-to-one correspondence between the fuzzy topolo-

gies τ and the mappings x 7→ N (x) of X into the set of all fuzzy filters on X, where

for each x ∈ X, N (x) fulfills (N1) and (N2). This correspondence is given by

N (x)(f) = intτf(x).

Valued fuzzy neighborhoods. Let (X, τ) be a fuzzy topological space. Then

for each α ∈ L0, the fuzzy subsets f ∈ LX are called α-fuzzy neighborhoods at x ([5])

if f ∈ α-prN (x), that is,

α ≤ intτf(x). (1.3)

By a valued fuzzy neighborhood at x ([5]) is meant an α-fuzzy neighborhood at x for

some α ∈ L0.
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The closure operator. For each fuzzy set f ∈ LX , the fuzzy set clτf ∈ LX

defined by

clτf(x) =
∨

M≤N (x)

M(f) (1.4)

for all x ∈ X, is called the closure of f ([5]). It is easily seen that clτf ≥ f .

For each fuzzy topological space (X, τ) the closure operator of τ is the mapping

cl which assigns to each fuzzy filter M on X the fuzzy filter clM, where

clM(f) =
∨

clτ g≤f

M(g). (1.5)

clM is called the closure of M. cl is isotone and is a hull operator, that is, for

all fuzzy filters M and N on X, we have

M≤ N implies clM≤ clN (1.6)

and moreover cl fulfills that

M≤ clM (1.7)

holds ([3]).

2. T0-Spaces

This section is devoted to introduce a notion of T0-spaces in the fuzzy case using

the neighborhood filter at a point. We also introduce different equivalent definitions

and study its relation with the α-level and the initial topologies and also we show

that this notion is a good extension in sense of Lowen [12]. Moreover, we show that

the initial and final fuzzy topological spaces of T0-spaces are also T0.

Definition 2.1 A fuzzy topological space (X, τ) is called T0 if for all x, y ∈ X with

x 6= y we have ẋ 6≤ N (y) or ẏ 6≤ N (x).

In the classical case L = {0, 1} the filter N (x) is up to an identification a set of

neighborhoods of x and the filter ẋ is a set of subsets of X contain x. In this case
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ẋ ≤ N (y) means ẋ ⊇ N (y) and ẋ 6≤ N (y) means there is a neighborhood of y not

containing x.

The following results will be used in the proof of Theorem 2.1.

Lemma 2.1 For all x, y ∈ X with x 6= y we have

N (x) 6≤ N (y) implies ẋ 6≤ N (y).

Proof. Since L is a complete chain, then N (x) 6≤ N (y) means that there is f ∈
LX such that N (x)(f) < N (y)(f). From that intτ intτf = intτf and N (x)(f) =

intτf(x) it follows ẋ(intτf) < N (y)(intτf). Thus there is a g = intτf ∈ LX such

that ẋ(g) < N (y)(g). Hence, ẋ 6≤ N (y). 2

Lemma 2.2 Let L,M,N be fuzzy filters on a set X. Then we have:

(1) L 6≤ M ≥ N implies L 6≤ N .

(2) L ≥M 6≤ N implies L 6≤ N .

Proof. Since L 6≤ M ≥ N and N ≥ L give a contradiction, then L 6≤ M ≥ N
implies L 6≤ N . That is, (1) is fulfilled.

The proof of (2) goes similarly. 2

Lemma 2.3 For all x, y ∈ X with x 6= y the following statements are equivalent.

(1) cl ẋ 6≤ ẏ or cl ẏ 6≤ ẋ.

(2) ẋ 6≤ cl ẏ or ẏ 6≤ cl ẋ.

(3) cl ẋ 6= cl ẏ.

Proof. Direct. 2

In the following theorem there will be introduced some equivalent definitions for

the T0-spaces.
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Theorem 2.1 Let (X, τ) be a fuzzy topological space. Then the following statements

are equivalent.

(1) (X, τ) is T0.

(2) For all x, y ∈ X with x 6= y we have cl ẋ 6≤ ẏ or cl ẏ 6≤ ẋ.

(3) x 6= y implies N (x) 6= N (y) for all x, y ∈ X.

(4) x 6= y implies there is f ∈ LX such that α ≤ N (x)(f) and f(y) < α for some

α ∈ L0 or there is g ∈ LX such that β ≤ N (y)(g) and g(x) < β for some

β ∈ L0 for all x, y ∈ X.

Proof. (1) ⇒ (2): Let (1) be hold and let x 6= y in X. Then ẋ 6≤ N (y) or ẏ 6≤ N (x)

and since cl ẋ ≥ ẋ and ẋ ≤ N (x) for each x ∈ X, it follows by (1) and (2) in Lemma

2.2 that cl ẋ 6≤ ẏ or cl ẏ 6≤ ẋ. That is, (2) is fulfilled.

(2) ⇒ (3): For all x 6= y in X, from Lemma 2.3 we have cl ẋ 6≤ ẏ implies ẋ 6≤ cl ẏ

which implies N (x) ≥ ẋ 6≤ cl ẏ ≥ ẏ. So, N (x) 6≤ ẏ and then for g = intτf ∈ LX ,

we get N (x)(g) < g(y). i.e. intτ intτf(x) = intτf(x) < intτf(y). That is, N (x) 6≤
N (y). Hence, N (x) 6= N (y) and therefore (3) is fulfilled.

(3) ⇒ (4): If (3) is fulfilled and x, y ∈ X with x 6= y, then N (x) 6= N (y), that

is, N (x) 6≤ N (y) or N (y) 6≤ N (x). Lemma 2.1 implies that ẋ 6≤ N (y) or ẏ 6≤ N (x).

Thus there is a fuzzy set f ∈ LX such that f(x) < N (y)(f) or a fuzzy set g ∈ LX

such that g(y) < N (x)(g). If we take N (y)(f) = α and N (x)(g) = β, then we get

α ≤ N (y)(f) and f(x) < α or β ≤ N (x)(g) and g(y) < β. Hence, (4) holds.

(4) ⇒ (1): Now, let (4) be hold and let x 6= y. Then there is a fuzzy set f ∈ LX

such that ẏ(f) = f(y) < N (x)(f) or a fuzzy set g ∈ LX such that ẋ(g) = g(x) <

N (y)(g). This is equivalent to ẋ 6≤ N (y) or ẏ 6≤ N (x) and hence, (1) is fulfilled. 2

In the view of Lemma 2.3 the condition (2) in Theorem 2.1 can be written as:

(2′) x 6= y implies ẋ 6≤ cl ẏ or ẏ 6≤ cl ẋ;
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or

(2′′) x 6= y implies cl ẋ 6= cl ẏ.

Example 2.1 Let L be a complete chain, X = {1, 2} and let τ = {0, 1} be the

indiscrete fuzzy topology. Since intτf = 0 or 1 for all f ∈ LX , then for x = 1 and

y = 2 we have

N (1)(f) = intτf(1) =





1 if f = 1

0 if f 6= 1
= intτf(2) = N (2)(f)

for all f ∈ LX and hence N (1) = N (2). That is, the space (X, τ) is not T0.

A subset of a space (X, T ) is called a neighborhood of a point x ∈ X, denoted

by Ox, if there is an open set G ∈ T such that x ∈ G ⊆ Ox.

A topological space (X,T ) is called T0 if x 6= y implies there is a neighborhood

Ox of x such that y 6∈ Ox or there is a neighborhood Oy of y such that x 6∈ Oy.

The next proposition shows that the fuzzy separation axiom T0 is a good exten-

sion in sense of [12].

Proposition 2.1 A topological space (X,T ) is T0 if and only if the induced fuzzy

topological space (X,ω(T )) is T0.

Proof. Let (X, T ) be T0 and let x 6= y. Then there is a neighborhood Oy ∈ T

such that x 6∈ Oy. Taking f = χOy , since sαf = Oy for each α ∈ L1 it follows

N (y)(f) = (intω(T )f)(y) = f(y) = 1 > f(x). Hence ẋ 6≤ N (y), where N (y) is the

fuzzy neighborhood filter at y related to the fuzzy topology ω(T ), that is, (X,ω(T ))

is T0.

Now, let (X,ω(T )) be T0. Then x 6= y implies there is a f ∈ LX such that

f(x) < (intω(T )f)(y). Since intω(T )f ∈ ω(T ) and (intω(T )f)(x) ≤ f(x) it follows y ∈
sf(x)(intω(T )f) ∈ T and x 6∈ sf(x)(intω(T )f). Hence sf(x)(intω(T )f) is a neighborhood

of y not containing x and therefore (X,T ) is T0. 2
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Remark 2.1 If S1 and S2 are topologies on a set X and S2 is finer than S1, then

(X, S1) is Ti implies (X,S2) is Ti for i = 0, 1, 2.

Proposition 2.2 Let (X, τ) be a fuzzy topological space and let (X, τα) and (X, ι(τ))

be the α-level and the initial topological spaces of (X, τ), respectively. Then the fol-

lowing statements

(1) (X, τ) is T0;

(2) (X, τα) is T0, α ∈ L1;

(3) (X, ι(τ)) is T0

fulfill the following implications: (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2): Let (X, τ) be T0 and let x 6= y in X. Then there is f ∈ LX

such that f(x) < (intτf)(y) and hence y ∈ sf(x)(intτf) and x 6∈ sf(x)(intτf). Since

intτf ∈ τ , it follows sf(x)(intτf) ∈ τf(x) and thus sf(x)(intτf) is a neighborhood of y

not containing x. Hence the space (X, τα), for α ≤ f(x), is T0.

(2) ⇒ (3): Since ι(τ) is finer than τα for all α ∈ L1 and the space (X, τα) is T0

for some α ∈ L1, then Remark 2.1 implies that the space (X, ι(τ)) is T0. 2

In the following we shall show that if I is a class and for each i ∈ I, (Xi, τi) is a

T0-space and for some i ∈ I, fi : X → Xi is an injective mapping and τ is the initial

fuzzy topology of (τi)i∈I with respect to (fi)i∈I , then the initial fuzzy topological

space (X, τ) is also T0.

At first we shall consider the case of I being a singleton.

Proposition 2.3 Let (Y, σ) be a T0-space and let f : X → Y be an injective map-

ping. Then the initial fuzzy topological space (X, f−1(σ)) is also T0.
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Proof. f is injective means x 6= y in X implies f(x) 6= f(y) in Y and (Y, σ) is

T0-space means there exists g ∈ LY such that

g(f(x)) < α ≤ (intσg)(f(y))

for some α ∈ L0. Since f : (X, f−1(σ)) → (Y, σ) is fuzzy continuous, then we have

(intσg) ◦ f ≤ intf−1(σ)(g ◦ f) and thus

(g ◦ f)(x) < α ≤ (intf−1(σ)(g ◦ f))(y).

This means there exists h = g ◦ f ∈ LX and α ∈ L0 such that

h(x) < α ≤ (intf−1(σ)h)(y).

Hence (X, f−1(σ)) is T0-space. 2

Now consider the case of any class I.

Proposition 2.4 Let (Xi, τi) be a T0-space for all i ∈ I and let fi : X → Xi be an

injective mapping for some i ∈ I. Then the initial fuzzy topological space (X, τ) is

also T0.

Proof. Let x 6= y in X. Since fi is an injective for some i ∈ I, then fi(x) 6= fi(y)

in Xi and thus there exists λi ∈ LXi and αi ∈ L0 such that

λi(fi(x)) < αi ≤ (intτi
λi)(fi(y)).

Because of that fi : (X, τ) → (Xi, τi) is fuzzy continuous, then (intτi
λi) ◦ fi ≤

intτ (λi ◦ fi) and therefore

(λi ◦ fi)(x) < αi ≤ intτ (λi ◦ fi)(y).

Therefore there exists λ = λi ◦ fi ∈ LX and αi ∈ L0 such that the condition of

T0-space is fulfilled. Hence, (X, τ) is T0-space. 2

Since the fuzzy topological subspace and product space are special initial fuzzy

topological spaces, then we have the following result.
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Corollary 2.1 Propositions 2.3 and 2.4 imply that the fuzzy topological subspace

and the fuzzy topological product space of T0-spaces are also T0.

Now let for all i ∈ I, (Xi, τi) is a T0-space and for some i ∈ I, fi : Xi → X

is a surjective fuzzy open mapping and τ is the final fuzzy topology of (τi)i∈I with

respect to (fi)i∈I . The following propositions show that the final fuzzy topological

space (X, τ) is also T0.

Proposition 2.5 Let (X, τ) be a T0-space and let f : X → Y be a surjective fuzzy

open mapping. Then the final fuzzy topological space (Y, f(τ)) is also T0.

Proof. Since f is surjective, then y1 6= y2 in Y implies there are x1, x2 ∈ X such

that y1 = f(x1), y2 = f(x2) and x1 6= x2. From that (X, τ) is a T0-space it follows

there are g ∈ LX and α ∈ L0 such that

g(x1) < α ≤ (intτg)(x2)

and this means

g(f−1(y1)) < α ≤ (intτg)(f−1(y2))

which means

(f(g))(y1) < α ≤ (f(intτg))(y2).

Because of that f is fuzzy open, it follows f(intτg) ≤ intf(τ)(f(g)) and therefore

(f(g))(y1) < α ≤ (intf(τ)f(g))(y2).

Since f(g) ∈ LY , then we get that the final fuzzy topological space (Y, f(τ)) is T0.

2

Proposition 2.6 Let I be any class and (Xi, τi) be a T0-space for all i ∈ I and

fi : Xi → X be a surjective fuzzy open mapping for some i ∈ I. Then the final fuzzy

topological space (X, τ) is also T0.
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Proof. Let x 6= y in X. From that fi is surjective it follows there are xi, yi ∈ Xi

such that x = fi(xi), y = fi(yi) and xi 6= yi. Since (Xi, τi) is a T0-space, then there

are λi ∈ LXi and αi ∈ L0 such that

λi(xi) < αi ≤ (intτi
λi)(yi)

which is equivalent to

λi(f
−1
i (x)) < αi ≤ (intτi

λi)(f
−1
i (y))

and this means

(fi(λi))(x) < αi ≤ (fi(intτi
λi))(y),

fi is fuzzy open implies fi(intτi
λi) ≤ intτ (fi(λi)) and this implies

(fi(λi))(x) < αi ≤ (intτfi(λi))(y)

for some fi(λi) ∈ LX and some αi ∈ L0. Hence the final fuzzy topological space

(X, τ) is T0. 2

The following result is a direct consequence of Propositions 2.5 and 2.6.

Corollary 2.2 The fuzzy topological sum space and the fuzzy topological quotient

space of T0-spaces are also T0.

In the following it will be shown that the finer fuzzy topological space of T0-space

is also T0.

Proposition 2.7 Let (X, τ) be a T0-space and let σ be a fuzzy topology on X finer

than τ . Then (X, σ) is also T0-space.

Proof. Since σ is finer than τ , then intτf ≤ intσf for all f ∈ LX . From that (X, τ)

is T0-space it follows for all x 6= y in X there exists f ∈ LX and α ∈ L0 such that

f(x) < α ≤ (intτf)(y)

and thus

f(x) < α ≤ (intσf)(y).

Hence (X, σ) is also T0-space. 2
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3. T1-Spaces

Here the fuzzy separation axioms T1 spaces will be introduced and a similar study

for T0-spaces will be done for T1-spaces.

Definition 3.1 A fuzzy topological space (X, τ) is called T1 if for all x, y ∈ X with

x 6= y we have ẋ 6≤ N (y) and ẏ 6≤ N (x).

Proposition 3.1 Every T1-space is T0-space.

Proof. Obvious. 2

The following example shows that there are T0-spaces which are not T1-spaces.

Example 3.1 Let L be a complete chain, X = {x, y} and let τ = {0, 1, x1}. Then

the fuzzy topological space (X, τ) is T0 and not T1.

The following theorem introduces equivalent definitions for the T1-spaces.

Theorem 3.1 In a fuzzy topological space (X, τ) the following statements are equiv-

alent.

(1) (X, τ) is T1.

(2) x 6= y implies cl ẋ 6≤ ẏ and cl ẏ 6≤ ẋ for all x, y ∈ X.

(3) cl ẋ = ẋ for each x ∈ X.

(4) x 6= y implies
∨

f∈Vx,f 6=1

f = g is a 1 - fuzzy neighborhood at x and g(y) < 1,

where Vx = {f ∈ LX | f is a valued fuzzy neighborhood at x}.

(5) x 6= y implies there are f, g ∈ LX such that α ≤ N (x)(f), f(y) < α and

β ≤ N (y)(g), g(x) < β for some α, β ∈ L0.
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Proof. (1) ⇒ (2): Similarly as in (1) ⇒ (2) in Theorem 2.1.

(2) ⇒ (3): Let (2) be hold. Then cl ẋ ≤ ẏ or cl ẏ ≤ ẋ implies x = y. This means

cl ẋ ≤ ẋ and we have cl ẋ ≥ ẋ for each x ∈ X. Hence, cl ẋ = ẋ.

(3) ⇒ (4): Let cl ẋ = ẋ, Vx = {f ∈ LX | f is a valued fuzzy neighborhood at x}
for each x ∈ X and let x 6= y. Then

∨
clg≤h

g(x) = h(x) and

int(
∨

f∈Vx, f 6=1

f)(x) ≥ ∨

f∈Vx, f 6=1

intf(x) = clf(x)

for each x ∈ X. Hence,
∨

f∈Vx, f 6=1

f = g is 1− fuzzy neighborhood at x and g(y) =

∨
f∈Vx, f 6=1

f(y) < 1 for all y 6= x. That is, (4) holds.

(4) ⇒ (5): If int(
∨

f∈Vx, f 6=1

f)(x) = intg(x) = 1 and g(y) < 1 for all y 6= x, then

taking α = 1, we get α ≤ N (x)(g) and g(y) < α for some α ∈ L0. Similarly, we get

that there is k ∈ LX such that β ≤ N (y)(k) and k(x) < β for some β ∈ L0. Hence,

(5) holds.

(5) ⇒ (1): Let (5) be hold and x 6= y. Then there are f, g ∈ LX such that

f(y) < α ≤ N (x)(f) and g(x) < β ≤ N (y)(g)

for some α, β ∈ L0. Hence, ẏ 6≤ N (x) and ẋ 6≤ N (y) and thus (1) is fulfilled. 2

Example 3.2 Let L be a complete chain, X = {x, y} and let τ = {0, 1, x1, y1}.
Then for x 6= y there are f = x1 and g = y1 such that

f(y) = 0 < 1 = intτf(x) = N (x)(f) and g(x) = 0 < 1 = intτg(y) = N (y)(g)

that is, ẏ 6≤ N (x) and ẋ 6≤ N (y). Hence, (X, τ) is T1.

A topological space (X,T ) is called T1 if x 6= y implies there are neighborhoods

Ox and Oy of x and y, respectively such that y 6∈ Ox and x 6∈ Oy.

Proposition 3.2 A topological space (X,T ) is T1 if and only if the induced fuzzy

topological space (X,ω(T )) is T1.
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Proof. Similarly, as in Proposition 2.1. 2

Proposition 3.3 For every fuzzy topological space (X, τ) the following statements

(1) (X, τ) is T1;

(2) (X, τα) is T1, α ∈ L1;

(3) (X, ι(τ)) is T1

fulfill the following implications: (1) ⇒ (2) ⇒ (3).

Proof. As in Proposition 2.2. 2

The following propositions will show that the initial fuzzy topological space

(X, τ) of the family ((Xi, τi))i∈I of T1-spaces is also T1.

Consider the case of one mapping.

Proposition 3.4 Let (Y, σ) be a T1-space and let f : X → Y be an injective map-

ping. Then the initial fuzzy topological space (X, f−1(σ)) is also T1.

Proof. Let x 6= y in X. Since f is injective, then f(x) 6= f(y) in Y and thus (Y, σ)

is T1-space means there exist g, h ∈ LY such that

g(f(x)) < α ≤ (intσg)(f(y)) and h(f(y)) < β ≤ (intσh)(f(x))

for some α, β ∈ L0. From that f : (X, f−1(σ)) → (Y, σ) is fuzzy continuous it

follows (intσg) ◦ f ≤ intf−1(σ)(g ◦ f) for all g ∈ LY and thus

(g ◦ f)(x) < α ≤ (intf−1(σ)(g ◦ f))(y) and (h ◦ f)(y) < β ≤ (intf−1(σ)(h ◦ f))(x).

This means there exist k = g ◦ f, l = h ◦ f ∈ LX and α, β ∈ L0 such that

k(x) < α ≤ (intf−1(σ)k)(y) and l(y) < β ≤ (intf−1(σ)l)(x).

Hence (X, f−1(σ)) is T1-space. 2

Now consider the case of any class I.
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Proposition 3.5 Let (Xi, τi) be a T1-space for all i ∈ I and let fi : X → Xi be an

injective mapping for some i ∈ I. Then the initial fuzzy topological space (X, τ) is

also T1.

Proof. The proof goes similarly as in the case of T0. 2

The following result is a direct consequence of Propositions 3.4 and 3.5.

Corollary 3.1 The fuzzy topological subspace and the fuzzy topological product

space of T1-spaces are also T1.

Now we are going to show that the final fuzzy topological space (X, τ) of a family

((Xi, τi))i∈I of T1-spaces is also T1.

Proposition 3.6 Let (X, τ) be a T1-space and let f : X → Y be a surjective fuzzy

open mapping. Then the final fuzzy topological space (Y, f(τ)) is also T1.

Proof. Since f is surjective, then y1 6= y2 in Y implies there are x1, x2 ∈ X such

that y1 = f(x1), y2 = f(x2) and x1 6= x2. Thus there are g, h ∈ LX and α, β ∈ L0

such that

g(x1) < α ≤ (intτg)(x2) and h(x2) < β ≤ (intτh)(x1)

and this means

g(f−1(y1)) < α ≤ (intτg)(f−1(y2)) and h(f−1(y2)) < β ≤ (intτh)(f−1(y1))

which means

(f(g))(y1) < α ≤ (f(intτg))(y2) and (f(h))(y2) < β ≤ (f(intτh))(y1).

Because of that f is fuzzy open, it follows f(intτg) ≤ intf(τ)(f(g)) for all g ∈ LX

and therefore

(f(g))(y1) < α ≤ (intf(τ)f(g))(y2) and (f(h))(y2) < β ≤ (intf(τ)f(h))(y1).

Since f(g), f(h) ∈ LY , then we get that the final fuzzy topological space (Y, f(τ))

is T1. 2

18



Proposition 3.7 Let I be any class and (Xi, τi) be a T1-space for all i ∈ I and

fi : Xi → X be a surjective fuzzy open mapping for some i ∈ I. Then the final fuzzy

topological space (X, τ) is also T1.

Proof. It is similar to the proof of Proposition 2.6. 2

The following result is a direct consequence of Propositions 3.6 and 3.7.

Corollary 3.2 The fuzzy topological sum space and the fuzzy topological quotient

space of T1-spaces are also T1.

Now, we shall show that the finer fuzzy topological space of T1-space is also T1.

Proposition 3.8 Let (X, τ) be a T1-space and let σ be a fuzzy topology on X finer

than τ . Then (X, σ) is also T1-space.

Proof. Similarly as in the case of T0-space. 2

4. T2-Spaces

Here, using the neighborhood filter introduced in [5], we introduce and study the

Hausdorff notion in the fuzzy case.

Definition 4.1 A fuzzy topological space (X, τ) is called T2 or Hausdorff if for all

x, y ∈ X with x 6= y we have N (x) ∧N (y) does not exist.

Proposition 4.1 Every T2-space is T1-space.

Proof. Let (X, τ) be a T2-space and x 6= y. Then N (x) ∧N (y) does not exist and

this means there are f, g ∈ LX such that N (x)(f) ∧N (y)(g) > sup(f ∧ g). Thus

N (x)(f) > (f ∧ g)(y) and N (y)(g) > (f ∧ g)(x). (4.1)
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From condition (F2) of the fuzzy filter and (4.1) we get

N (x)(f ∧ g) > (f ∧ g)(y) and N (y)(f ∧ g) > (f ∧ g)(x),

that is, there are k = f ∧ g ∈ LX such that N (x)(k) > k(y) and N (y)(k) > k(x)

and this means ẏ 6≤ N (x) and ẋ 6≤ N (y). Hence, (X, τ) is T1. 2

The class of T1-spaces is larger than the class of T2-spaces. This will be shown

in the following example.

Example 4.1 Let L be a complete chain, X = {x, y} and τ = {xα, yα, α for each

α ∈ L}. Then there are f = x1 and g = y1 such that

intτf(x) = 1 > f(y) and intτg(y) = 1 > g(x).

Hence, (X, τ) is T1 but it is not T2.

Theorem 4.1 For a fuzzy topological space (X, τ), the following statements are

equivalent.

(1) (X, τ) is T2.

(2) For all x, y ∈ X with x 6= y, we have M 6≤ N (x) or M 6≤ N (y) for all ultra

fuzzy filters M on X.

(3) For all x, y ∈ X with x 6= y, we have M 6≤ N (x) or M 6≤ N (y) for all fuzzy

filters M on X.

Proof. (1) ⇒ (2): If (1) is fulfilled and x 6= y, M ≤ N (x) and M ≤ N (y) for all

ultra fuzzy filters M on X, then for all f, g ∈ LX we get

M(f) ≥ N (x)(f) and M(g) ≥ N (y)(g).

Since M(f) ≤ sup f for each f ∈ LX and M(f ∧ g) = M(f) ∧M(g) it follows

N (x)(f) ∧N (y)(g) ≤M(f ∧ g) ≤ sup (f ∧ g)
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for all f, g ∈ LX , that is, N (x)∧N (y) exists and this contradicts the condition (1).

Hence, x 6= y implies M 6≤ N (x) or M 6≤ N (y).

(2) ⇒ (3): If (2) holds and x 6= y, then M 6≤ N (x) or M 6≤ N (y) for all ultra

fuzzy filters M on X. From Proposition 1.2, for each fuzzy filter L on X we find

an ultra fuzzy filter M on X such that M≤ L and hence, by means of Lemma 2.2,

L 6≤ N (x) or L 6≤ N (y). Therefore, (3) holds.

(3) ⇒ (1): Let M 6≤ N (x) or M 6≤ N (y) for all fuzzy filters M on X and for

all x 6= y in X. Then there exist f, g ∈ LX such that

M(f) 6≥ N (x)(f) or M(g) 6≥ N (y)(g)

taking α ∈ L0 for which α ≤ N (x)(f) and α ≤ N (y)(g), we get

α 6≤ M(f) ∧M(g) ≤ sup (f ∧ g).

Hence, N (x) ∧N (y) does not exist for all x, y ∈ X with x 6= y. 2

For a fuzzy topological space (X, τ), a fuzzy filter M on X is said to converge to

a point x ∈ X, written M -
τ

x, provided M is finer than the fuzzy neighborhood

filter N (x), that is, M ≤ N (x). The conditions (2) and (3) in Theorem 4.1 state

that M -
τ

x and M -
τ

y for some fuzzy filters M on X imply x = y.

Example 4.2 Let L be a complete chain, X = {x, y} and let τ = {0, 1, x1, y1}.
Then for all x 6= y we find f = x1, g = y1 such that

sup(f ∧ g) = 0 < 1 = intτf(x) ∧ intτg(y) = N (x)(f) ∧N (y)(g)

that is, N (x) ∧N (y) does not exist. Hence, (X, τ) is T2.

Example 4.3 Let L be a complete chain, X a non-empty set and let τ = {α | α ∈
L}. Then for all f, g ∈ LX and x 6= y we have intτf = inf f and intτg = inf g and

thus

N (x)(f) ∧N (y)(g) = inf f ∧ inf g ≤ sup(f ∧ g).

Hence, N (x) ∧N (y) exists and this means that (X, τ) is not T2.
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A topological space (X,T ) is called T2 if x 6= y implies there are neighborhoods

Ox and Oy of x and y, respectively such that Ox ∩ Oy = ∅ for all x, y ∈ X.

Proposition 4.2 A topological space (X,T ) is T2 if and only if the induced fuzzy

topological space (X,ω(T )) is T2.

Proof. (X,T ) is T2 and x 6= y imply there are Ox,Oy ∈ T such that Ox ∩ Oy = ∅.
Taking f = χOx and g = χOy , we get

N (x)(f) ∧N (y)(g) = (intω(T )f)(x) ∧ (intω(T )g)(y) = 1 > sup(f ∧ g).

Hence, N (x) ∧N (y) does not exist. That is, (X,ω(T )) is T2.

Conversely, let (X, ω(T )) be T2 and let x 6= y. Then there are f, g ∈ LX such

that (intω(T )f)(x)∧ (intω(T )g)(y) > sup(f ∧ g) and hence (intω(T )f)(x) > sup(f ∧ g)

and (intω(T )g)(y) > sup(f ∧ g). If we take α = sup(f ∧ g), then x ∈ sα(intω(T )f)

and y ∈ sα(intω(T )g). Since intω(T )f and intω(T )g are elements of ω(T ), it follows

that sα(intω(T )f), sα(intω(T )g) ∈ T hold and hence Ox = sα(intω(T )f) and Oy =

sα(intω(T )g) are neighborhoods of x and y, respectively and moreover Ox ∩ Oy = ∅.
Hence, (X,T ) is T2. 2

Proposition 4.3 Let (X, τ) be a fuzzy topological space. Then the following state-

ments

(1) (X, τ) is T2;

(2) (X, τα) is T2, α ∈ L1;

(3) (X, ι(τ)) is T2

fulfill the following implications: (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2): (X, τ) is T2 and x 6= y imply there are f, g ∈ LX such that

intτf(x) ∧ intτg(y) > sup(f ∧ g). Taking α = sup(f ∧ g), then x ∈ sα(intτf) and
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y ∈ sα(intτg). Since (intτf)(x) ∧ (intτg)(y) > α for all x 6= y in X, then

sα(intτf) ∩ sα(intτg) = sα(intτf ∧ intτg) = ∅.

Because of that sα(intτf), sα(intτg) ∈ τα hold, it follows there are neighborhoods

Ox = sα(intτf) and Oy = sα(intτg) of x and y, respectively for which Ox ∩Oy = ∅.
Therefore, (X, τα), α = sup(f ∧ g) ∈ L1, f, g ∈ LX , is T2.

(2) ⇒ (3): Follows directly from Remark 2.1. 2

As in the case of T0-spaces and T1-spaces we shall show in the following propo-

sitions that the initial fuzzy topological space (X, τ) of a family ((Xi, τi))i∈I of

T2-spaces is also T2.

At first Let I be a singleton.

Proposition 4.4 Let (Y, σ) be a T2-space and let f : X → Y be an injective map-

ping. Then the initial fuzzy topological space (X, f−1(σ)) is also T2.

Proof. Because of that f is injective, then x 6= y in X implies f(x) 6= f(y) in Y

and since (Y, σ) is T2-space it follows there exist g, h ∈ LY such that

(intσg)(f(x)) ∧ (intσh)(f(y)) > sup(g ∧ h).

From the continuity of f : (X, f−1(σ)) → (Y, σ) it follows (intσg)◦f ≤ intf−1(σ)(g◦f)

for all g ∈ LY and since sup(g ∧ h) ≥ sup((g ◦ f) ∧ (h ◦ f)) we get

(intf−1(σ)(g ◦ f))(x) ∧ (intf−1(σ)(h ◦ f))(y) > sup((g ◦ f) ∧ (h ◦ f)).

Thus there exist k = g ◦ f, l = h ◦ f ∈ LX such that

(intf−1(σ)k)(x) ∧ (intf−1(σ)l)(y) > sup(k ∧ l).

Hence (X, f−1(σ)) is T2-space. 2

For any class I we have the following result.
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Proposition 4.5 Let (Xi, τi) be a T2-space for all i ∈ I and let fi : X → Xi be an

injective mapping for some i ∈ I. Then the initial fuzzy topological space (X, τ) is

also T2.

Proof. Since for some i ∈ I, fi is injective, then x 6= y in X implies fi(x) 6= fi(y)

in Xi and thus there are λi, µi ∈ LXi such that

(intτi
λi)(fi(x)) ∧ (intτi

µi)(fi(y)) > sup(λi ∧ µi).

Since fi is fuzzy continuous, then (intτi
λi) ◦ fi ≤ intτ (λi ◦ fi) for all λi ∈ LXi . Hence

intτ (λi ◦ fi)(x) ∧ intτ (µi ◦ fi)(y) > sup(λi ∧ µi) ≥ sup((λi ◦ fi) ∧ (µi ◦ fi)).

Therefore there exist λ = λi ◦ fi ∈ LX , µ = µi ◦ fi ∈ LX such that

(intτλ)(x) ∧ (intτµ)(y) > sup(λ ∧ µ).

Hence, the fuzzy topological space (X, τ) is T2. 2

The following result is a direct consequence of Propositions 4.4 and 4.5.

Corollary 4.1 The fuzzy topological subspace and the fuzzy topological product

space of T2-spaces are also T2.

In the following it will be shown that the final fuzzy topological space (X, τ) of

a family ((Xi, τi))i∈I of T2-spaces is also T2.

Proposition 4.6 If (X, τ) is a T2-space and f : X → Y a surjective fuzzy open

mapping, then the final fuzzy topological space (Y, f(τ)) is also T2.

Proof. Since f is surjective, then y1 6= y2 in Y implies there are x1, x2 ∈ X such

that y1 = f(x1), y2 = f(x2) and x1 6= x2. Because of that (X, τ) is T2 it follows

there are g, h ∈ LX such that

(intτg)(x1) ∧ (intτh)(x2) > sup(g ∧ h)
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and this means

(intτg)(f−1(y1)) ∧ (intτh)(f−1(y2)) > sup(g ∧ h)

which means

(f(intτg))(y1) ∧ (f(intτh))(y2) > sup(g ∧ h).

Since f is fuzzy open, it follows f(intτg) ≤ intf(τ)(f(g)) for all g ∈ LX and therefore

(intf(τ)f(g))(y1) ∧ (intf(τ)f(h))(y2) > sup(g ∧ h) ≥ sup(f(g) ∧ f(h)).

Since f(g), f(h) ∈ LY , then we get that the final fuzzy topological space (Y, f(τ))

is T2. 2

Proposition 4.7 Let I be any class and (Xi, τi) be a T2-space for all i ∈ I and

fi : Xi → X be a surjective fuzzy open mapping for some i ∈ I. Then the final fuzzy

topological space (X, τ) is also T2.

Proof. Since for some i ∈ I, fi is surjective, then x 6= y in X implies there

are xi, yi ∈ Xi such that x = fi(xi), y = fi(yi) and xi 6= yi and thus there are

λi, µi ∈ LXi such that

(intτi
λi)(xi) ∧ (intτi

µi)(yi) > sup(λi ∧ µi)

and this means

(intτi
λi)(f

−1
i (x)) ∧ (intτi

µi)(f
−1
i (y)) > sup(λi ∧ µi)

which means

(fi(intτi
λi))(x) ∧ (fi(intτi

µi))(y) > sup(λi ∧ µi).

Since fi is fuzzy open, it follows fi(intτi
λi) ≤ intτ (fi(λi)) for all λi ∈ LXi and

therefore

(intτfi(λi))(x) ∧ (intτfi(µi))(y) > sup(λi ∧ µi) ≥ sup(fi(λi) ∧ fi(µi)).
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Since fi(λi), fi(µi) ∈ LX , then we get that the final fuzzy topological space (X, τ) is

T2. 2

The following result is a direct consequence of Propositions 4.6 and 4.7.

Corollary 4.2 The fuzzy topological sum space and the fuzzy topological quotient

space of T2-spaces are also T2.

In the following it will be shown that the finer fuzzy topological space of T2-space

is also T2.

Proposition 4.8 Let (X, τ) be a T2-space and let σ be a fuzzy topology on X finer

than τ . Then (X, σ) is also T2-space.

Proof. It is easily seen from the properties of the finer topologies. 2
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